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Abstract

We propose a method for image compression by integrat-

ing a deep neural network (DNN) with the better portable

graphics (BPG) codec. As DNN can learn the prior infor-

mation from image data, it will reduce the transmission in-

formation through BPG codec and achieves a good visual

quality for the decompressed image. The proposed method

includes three parts: the BPG codec, the artifact reduction

network and the colorization network. First, image is con-

verted to the CIE Lab color space. Then, the BPG codec

compresses L component and color hint extracted from the

a, b components. To satisfy the file size, the suitable QP

values of BPG compression will be found for each image by

binary search. Next, the decompressed L will be improved

by the artifact reduction network. Finally, the colorization

network will predict a and b components from the decom-

pressed L and the color hint. We evaluate the proposed

method upon the CLIC validation sets and Kodak image sets

by the quantitative metrics (PSNR, MS-SSIM). The compar-

ison with BPG is also presented.

1. Introduction

Lossy image compression, which aims to encode the

image using fewer bits, has been extensively researched

for decades. The traditional image coding, e.g., JPEG [1]

and JPEG 2000 [2], are generally designed based on the

fixed hand-crafted image transformation such as Discrete

Cosine Transform (DCT) or Discrete Wavelet Transform

(DWT). Recently, the better portable graphics (BPG) codec

[3], which leverages intra-frame coding tools in the high-

efficiency video coding (HEVC) for image compression has

outperformed other standard lossy image coding methods.

In recent years, neural networks and deep learning have

led to significant achievements in various computer vision
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tasks. With the advantage of automatic feature extraction

and high-level representation, many works have applied

end-to-end deep learning to image compression with dif-

ferent autoencoder architectures and quantization methods

such as [4–6]. However, the end-to-end image compression

network has not been ready to beat the state of the art im-

age compression codec such as BPG codec. Instead of end-

to-end learning for image compression, some works were

performed as a post-processing method for the standard im-

age coding such as compression artifact reduction [7–9].

These methods can improve quality of the decompressed

image, but they may not reduce the transmit information

through compressor. One possible solution to perform this

reduction is colorization method [10], which only requires

the grayscale image and few guidance information. If the

colorization method is good enough, the compressor only

needs to compress the graycale image and guidance infor-

mation, which ocupies lower bits than the color image.

Hence, in this work, we proposed a method for image

compression that includes three parts: BPG codec, which

is used as compressor and decompressor; artifact reduction

network, which improves the decompressed image; and col-

orization network, which leverages prior information to pre-

dict the color component of image.

2. Related Works

Deep learning based methods for compression artifact

reduction consist Dong et al. [7], which proposes 4 layer

convolutional neural network with specific operations: fea-

ture extraction, feature enhancement, mapping and rescon-

truction for deblocking and deblurring of compressed im-

ages; Zheng et al. [9], which proposes an greedy loss ar-

chitecture for improving the JPEG compression artifact re-

duction; and Kirmemis et al. [8], which proposes a solution

based on residual blocks to reduce compression artifacts for

BPG compressed image.

On the other hand, the deep learning based coloriza-

tion networks include Endo et al. [11], which automatically

learns similarity between pixels given user strokes and in-



Figure 1: The proposed method architecture

Figure 2: Color hint extraction

put images; Sangkloy et al. [12], which developed a system

to translate sketches to real images, with support for user

color strokes; Zhang et al. [10], which proposed a U-Net

structure to generate color image from the grayscale image

and the color hint.

3. Proposed method

The proposed framework for image compression is

shown in Figure 1. The whole framework is divided into

three main components: the compression module based on

BPG codec, the artifact reduction network, and the coloriza-

tion network.

3.1. Compression module based on BPG Codec

First, the original image is converted to the CIE Lab

color space. Then, the color hint is generated by getting

the top left corner value of every k × k pixels in the chroma

a and b, as shown in Figure 2. Finally, L component and

color hint will be compressed by the BPG Codec with the

corresponding target bitrate 0.11 and 0.04. In order to sat-

isfy the bitrate condition, the suitable QP value of BPG

encoder will be found by using binary search. Hence, the

range of QP value is set in the range [1, 51] and the binary

search will iteratively find the QP value inside this range

until the real bitrate aproximates to the target bitrate.

Figure 3: Artifact Reduction Network

3.2. Artifact Reduction Network

During BPG compression, the color hint will have a bit-

rate as 0.04×k×k bpp. When k is bigger, bit-rate increases

exponentially, which leads to less artifact in the compres-

sion result without the need of post-processing. In contrast,

the decompressed L may contain some unexpected artifacts,

which reduces quality of the recovered color image. To

overcome this problem, the proposed artifact reduction net-

work [8] will be leveraged. Instead of directly generating an

image, the network will be modified to predict the residual

output, which later is added to the input L component for

achieving better L component. The structure of network is

illustrated in Figure 3. It is composed of 6 layers including

2 convolutional layers, 4 residual blocks. The input is the L

image after compression and the output is the improved L.

The loss function is defined as Eqn. 1.

La =
1

N

N
∑

i=1

∑

h,w

||Ri − (L̂i − Li)||
2

2
(1)

where Ri is the residual output of the network; L̂i is the

ground truth L component; Li is the input decompressed L

component; N is the number of training images; h and w

are the index of height and width of an input image, respec-

tively.

3.3. Colorization Network

Before this step, the decompressed color hint needs to

be reshaped to its original size by performing inverse pro-

cess in the compression step and all empty pixels are set to

zero. Then, the colorization network with local hint condi-

tion [10] is used to generate the color component a and b.

The inputs to network are a grayscale image X ∈R
H×W×1,

along with the color hint U ∈R
H×W×2 and the binary mask

B ∈R
H×W×1 indicating which pixels contain the hint. The

output of the network is Y ∈ R
H×W×2 , the estimation of



Figure 4: Colorization Network

the a and b color channels of the image. The structure of

the colorization network is shown in Fig. 4. The network is

trained to minimize the objective function in Eqn. 2.
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where Y is the predicted a, b from the network; Ŷ is the

ground truth of a, b components; M is the number of train-

ing images; h,w are the index of height and width of an

output image, respectively; and δ is the threshold, in this

work δ = 1.

In order to obey RAM requirements (16 GB) on the eval-

uation server, the input L and color hint are divided into 4

blocks and the colorization network processes these blocks

separately. Output blocks of the colorization network are

merged together to get the final ab chroma.

4. Experimental Results

4.1. Training setting

We train the artifact reduction network and the coloriza-

tion network separately. The artifact reduction network

is trained with mobile training set consisting of 1048 im-

ages and batch size of 64, while the colorization network

is trained with Imagenet dataset ILSVRC2012 [13] and

batch size of 25. For the artifact reduction network, we

use BPG encoder to encode the training L images with the

target bitrate around 0.11. We train both networks using

the Adam optimizer [14] with the default parameters (β1 =

0.9, β2=0.999) The learning rate is initialized to 0.0001 and

is halved at every 100th epoch. Networks are trained on

256x256 random crops without any data augmentation. We

stop training networks when the learning curve converges.

Table 1: Average PSNR and MS-SSIM for the validation

set

Validation Set

Method PSNR MS-SSIM bpp

BPG 37.27 0.9468 0.1487

Ours 34.2293 0.9379 0.1467

Table 2: Average PSNR and MS-SSIM for the Kodak

Dataset

Kodak Dataset

Method PSNR MS-SSIM bpp

BPG 28.8446 0.9206 0.1465

Ours 28.2318 0.9150 0.1476

4.2. Evaluation

We present PSNR and MS-SSIM results for the given

validation set consisting of 102 images. Table 1 shows the

average PSNR and MS-SSIM results of our method and

BPG on the validation sets. The proposed method performs

with PSNR lower than BPG and MS-SSIM similar to BPG.

We also evaluate methods on the Kodak dataset [15], which

consists of 24 images. Evaluation results are shown in Table

2. Although our results can not exceed the BPG method, the

visual results of our method are better than the BPG result

in some cases, as shown in Figure 5.

5. Conclusions

This paper describes an image compression approach

which combine BPG codec and Deep Learning methods.

Our results show that the average PSNR and MS-SSIM are

close to the BPG result. By combining the deep neural net-

work, we can satisfy the file size requirement and the com-

pression time. Although the proposed method can not out-

perform BPG, it shows that a combination of deep neural

network and the standard image coding will be a potential



Left: Original cropped images. Middle: BPG compression results. Right: The proposed method results

Figure 5: Visual results for images in the Validation Set

direction to perform image compression.
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